Name:			

Math worksheet on 'Algebraic Functions - Variable Substitution to Equation - Multiple Fractional Terms (Negatives) (Level 2)'. Part of a broader unit on 'Algebra Basic Concepts - Advanced'

Learn online: app.mobius.academy/math/units/algebra basic concepts advanced/

beco	s this equation me when =4, r=5, b=3	$\frac{\mathbf{a}}{6 \cdot -4} = \frac{6 \cdot -4}{3 \cdot 4} = \frac{\mathbf{a}}{3 \cdot 4}$	$-\frac{3\cdot 5}{5\cdot 3}$	$\frac{\mathbf{b}}{-6 \cdot -4}$ $\frac{3 \cdot 4}{3 \cdot 4}$	$+\frac{3\cdot 5}{5\cdot 3}$
-6m	_ <u>3r</u>	$\frac{\mathbf{c}}{6 \cdot -4} \\ \frac{3 \cdot 4}{3 \cdot 4}$	$+\frac{3\cdot 5}{5\cdot 3}$		$-\frac{3+5}{5+3}$
3 <i>d</i>	5 <i>b</i>	$\frac{\mathbf{e}}{-6 \cdot -4}$ $\frac{3 \cdot 4}{3 \cdot 4}$	$\times \frac{3 \cdot 5}{5 \cdot 3}$	$\frac{\mathbf{f}}{-6 \cdot -4} \\ \frac{3 \cdot 4}{3 \cdot 4}$	$-rac{3\cdot 5}{5\cdot 3}$

What does the become p=-4, b=4,	when	$\frac{\mathbf{a}}{4\cdot -4}$	$\frac{4\cdot 3}{6\cdot 2}$	$\frac{\mathbf{b}}{4\cdot -4}$	$\frac{4\cdot 3}{6\cdot 2}$
<u>-4p</u> _	<u>4c</u>	$\frac{\mathbf{C}}{\frac{-4\cdot -4}{4\cdot 4}}$	$-\frac{4\cdot 3}{6\cdot 2}$	$\frac{-4 \cdot -4}{4 \cdot 4} +$	$-\frac{4\cdot 3}{6\cdot 2}$
4 <i>b</i>	6 <i>m</i>	$-4 + -4 \over 4 + 4$	$-\frac{4+3}{6+2}$	$\frac{-4 \cdot -4}{4 \cdot 4} >$	$<\frac{4\cdot 3}{6\cdot 2}$

$$\frac{6m}{3y} + \frac{4b}{2p} \begin{bmatrix} \frac{\mathbf{a}}{6 \cdot -4} \\ \frac{6 \cdot -4}{3 \cdot 2} \times \frac{4 \cdot 3}{2 \cdot -2} \\ \frac{6 \cdot -4 + 4 \cdot 3}{3 \cdot 2} \end{bmatrix}$$

$$\frac{6}{3m} + \frac{4p}{3y} \begin{bmatrix} \frac{1}{6 \cdot -5} & \frac{4 \cdot 3}{3 \cdot 2} & \frac{6}{3 \cdot -2} \cdot \frac{4 \cdot 3}{3 \cdot 2} & \frac{6}{3 \cdot -2} & \frac{6}{3 \cdot -2} \cdot \frac{4 \cdot 3}{3 \cdot 2} & \frac{6}{3 \cdot -2} & \frac{6}{$$

What does this equation become when y=5, r=-2, p=-3, z=3	$ \begin{vmatrix} \mathbf{a} & \mathbf{b} \\ \frac{-4 \cdot 5}{5 \cdot -2} + \frac{6 \cdot -3}{3 \cdot 3} & \frac{-4 \cdot 5}{5 \cdot -2} - \frac{6 \cdot -3}{3 \cdot 3} \end{vmatrix} $
$\frac{-4y}{-}$ $\frac{6p}{}$	$ \frac{\mathbf{c}}{\frac{4 \cdot 5}{5 \cdot -2}} + \frac{6 \cdot -3}{3 \cdot 3} = \frac{\mathbf{d}}{\frac{-4 \cdot 5}{5 \cdot -2}} \times \frac{6 \cdot -3}{3 \cdot 3} $
5r $3z$	$\frac{\mathbf{e}}{\frac{4 \cdot 5}{5 \cdot -2}} - \frac{6 \cdot -3}{3 \cdot 3} = \frac{\mathbf{f}}{\frac{-4+5}{5+-2}} - \frac{6+-3}{3+3}$