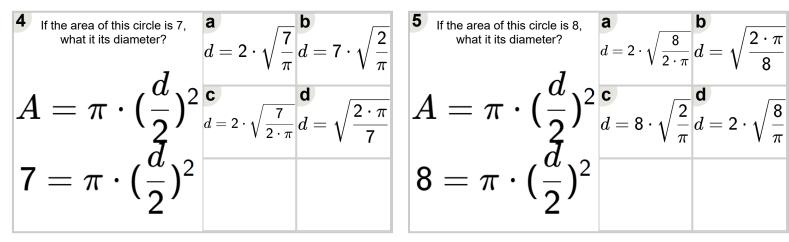
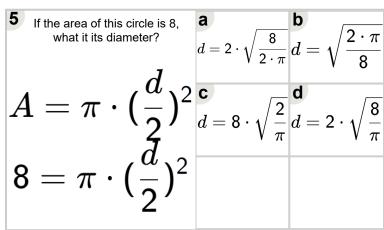
NI	ar	ne	٦.	
ľ	aı	110	<i>-</i> .	

Math worksheet on 'Area of a Circle - Area and Equation to Diameter (Pi Value) (Level 1)'. Part of a broader unit on 'Geometry - Circle Partial Area and Circumference - Intro'


Learn online:


app.mobius.academy/math/units/geometry_circles_partial_perimeter_area_intro/

1 If the area of this circle is 5, what it its diameter?	$d=2\cdot\sqrt{rac{5}{2\cdot\pi}}$	$d=2\cdot\sqrt{rac{5}{\pi}}$
$A=\pi\cdot(rac{d}{2})^2$	$d=\sqrt{rac{2\cdot\pi}{5}}$	$egin{aligned} \mathbf{d} \ d = 5 \cdot \sqrt{rac{2}{\pi}} \end{aligned}$
$5=\pi\cdot(\frac{a}{2})^2$		

If the area of this circle is 2, what it its diameter?	$egin{aligned} \mathbf{a} \ d = 2 \cdot \sqrt{rac{2}{\pi}} \mathbf{b} \ d = \sqrt{rac{2 \cdot \pi}{2}} \ \end{aligned}$
$A=\pi\cdot(rac{d}{2})^2$	$d=2\cdot\sqrt{rac{2}{2\cdot\pi}}$
$2=\pi\cdot(rac{d}{2})^2$	

If the area of this circle is 10, what it its diameter?	$d=10\cdot\sqrt{rac{2}{\pi}}$	$oldsymbol{b} d = 2 \cdot \sqrt{rac{10}{2 \cdot \pi}}$
$A=\pi\cdot(rac{d}{2})^2$	$egin{aligned} \mathbf{c} \ d = 2 \cdot \sqrt{rac{10}{\pi}} \end{aligned}$	$d \ d = \sqrt{rac{2 \cdot \pi}{10}}$
$10=\pi\cdot(\frac{a}{2})^2$		

If the area of this circle is 9, what it its diameter?
$$d = \sqrt{\frac{2 \cdot \pi}{9}} d = 2 \cdot \sqrt{\frac{9}{\pi}}$$

$$A = \pi \cdot (\frac{d}{2})^2$$

$$d = 9 \cdot \sqrt{\frac{2}{\pi}} d = 2 \cdot \sqrt{\frac{9}{2 \cdot \pi}}$$

$$d = 9 \cdot \sqrt{\frac{2}{\pi}} d = 2 \cdot \sqrt{\frac{9}{2 \cdot \pi}}$$

$$d = 9 \cdot \sqrt{\frac{2}{\pi}} d = 2 \cdot \sqrt{\frac{9}{2 \cdot \pi}}$$

$$d = 9 \cdot \sqrt{\frac{2}{\pi}} d = 2 \cdot \sqrt{\frac{9}{2 \cdot \pi}}$$

7 If the area of this circle is 4, what it its diameter?	$egin{aligned} \mathbf{a} \ d = 4 \cdot \sqrt{rac{2}{\pi}} \mathbf{b} \ d = 2 \cdot \sqrt{rac{4}{2 \cdot \pi}} \end{aligned}$
$A=\pi\cdot(rac{d}{2})^2$	$egin{aligned} \mathbf{c} \ d = \sqrt{rac{2 \cdot \pi}{4}} \ d = 2 \cdot \sqrt{rac{4}{\pi}} \end{aligned}$
$4=\pi\cdot(rac{d}{2})^2$	