


Math worksheet on 'Complex Numbers - Rewriting Roots (Level 3)'. Part of a broader unit on 'Complex Numbers'

Learn online: app.mobius.academy/math/units/complex numbers/

1 Rewrite the root as a complex number and simplify all radicals	a $5i\sqrt{2y^2}$	${f b}$ $5i\sqrt{6y^3}$	c $i\sqrt{8y}$
$\sqrt{-125}y$	${f d}$ $5i\sqrt{5y}$	e $4i\sqrt{6y}$	f $7i\sqrt{y}$

Rewrite the root as a complex number and simplify all radicals	$^{ t a}3pi$	\mathbf{b} $4pi\sqrt{5}$	$oldsymbol{c}$ $2pi\sqrt{4}$
$\sqrt{-80p^2}$	d $3pi\sqrt{6}$	e $p^3i\sqrt{4}$	$\overset{\scriptscriptstyle{f}}{2}pi$

5 Rewrite the root as a complex number and simplify all radicals					
$\sqrt{-112x^4}$					
a	b	C	d	е	f
$2xi\sqrt{6}$	$\overline{5}$ $3x^3i\sqrt{4}$	$2xi\sqrt{4}$	$4x^4i\sqrt{4}$	$4x^2i\sqrt{7}$	$2x^4i\sqrt{4}$

Rewrite the root as a complex number and simplify all radicals	a $3i\sqrt{7y}$	$3i\sqrt{9y}$	\mathbf{c} $6i\sqrt{7y}$
$\sqrt{-63}y$	d $4i\sqrt{6y}$	e $5i\sqrt{4y^3}$	${f f}$ $5i\sqrt{7y}$

7 Rewrite the root as a complex number and simplify all radicals	$5d^3i\sqrt{d}$	$3di\sqrt{2d}$	$oldsymbol{C}$ 7 $d^2i\sqrt{d^3}$
$\sqrt{-32d^3}$	d $6d^3i\sqrt{2d}$	e $4di\sqrt{2d}$	${f f}$ 4 $d^3i\sqrt{d}$