| lame: | | |-------|--| | | | Math worksheet on 'Exponents - Negative Exponents, Negative Base (to Fraction Exponent Form) (Level 1)'. Part of a broader unit on 'Exponents - Advanced' Learn online: app.mobius.academy/math/units/exponents advanced/ | What is another way of representing this number raised to a negative exponent? | ^a 1 | ^b 3 | ^c -1 | |--|-----------------------|-----------------------|-----------------------| | (0)-2 | 2 ³ | $\overline{2^{-1}}$ | <u>3</u> ² | | $(-3)^{2}$ | 1 | ^e 3 | ^f -1 | | | 3 2 | 2 ³ | 2 ³ | | What is another way of representing this number raised to a negative exponent? | a
-1 | ^b 10 | ^c -1 | |--|------------------------|---------------------|---------------------| | (| 10 ² | $\overline{2^{10}}$ | $\overline{2^{10}}$ | | $(-10)^{-2}$ | 1 | e 1 | ^f 10 | | | 10 ² | $\overline{2^{10}}$ | $\overline{2^{-1}}$ | | What is another way of representing this number raised to a negative exponent? | ^a 1 | b-1 | ° 5 | |--|-----------------------|-----------------------|---------------------| | - \ - 2 | 5 ² | 2 ⁵ | $\overline{2^5}$ | | $(-5)^{-2}$ | ^d 1 | $^{\mathrm{e}}$ -1 | ^f 5 | | | 2 ⁵ | 5 ² | $\overline{2^{-1}}$ | | What is another way of representing this number raised to a negative exponent? | ^a 6 | b 1 | ^c 1 | |--|-----------------------|---------------------|-----------------------| | (-2) -2 | $\overline{2^6}$ | 26 | $\overline{2^6}$ | | $(-6)^{-2}$ | ^d -1 | e 6 | ^f 1 | | | 6 ² | $\overline{2^{-1}}$ | 6 ² | $$\begin{pmatrix} \text{What is another way of representing this number raised to a negative exponent?} \\ \begin{pmatrix} -9 \end{pmatrix}^{-2} \begin{pmatrix} \frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2}$$ | What is another way of representing this number raised to a negative exponent? | $^{a}-1$ | ^b 1 | ^c 1 | |--|-----------------------|---------------------|------------------| | 2 | 4 ² | $\overline{2^4}$ | 4 2 | | $(-4)^{-2}$ | ^d 4 | $^{ extsf{e}}$ -1 | ^f 4 | | | $\overline{2^{-1}}$ | 24 | $\overline{2^4}$ |