lame:	

Math worksheet on 'Exponents - Negative Exponents, Negative Base (to Fraction Exponent Form) (Level 1)'. Part of a broader unit on 'Exponents - Advanced'

Learn online: app.mobius.academy/math/units/exponents advanced/

What is another way of representing this number raised to a negative exponent?	^a 1	^b 3	^c -1
(0)-2	2 ³	$\overline{2^{-1}}$	<u>3</u> ²
$(-3)^{2}$	1	^e 3	^f -1
	3 2	2 ³	2 ³

What is another way of representing this number raised to a negative exponent?	a -1	^b 10	^c -1
(10 ²	$\overline{2^{10}}$	$\overline{2^{10}}$
$(-10)^{-2}$	1	e 1	^f 10
	10 ²	$\overline{2^{10}}$	$\overline{2^{-1}}$

What is another way of representing this number raised to a negative exponent?	^a 1	b-1	° 5
- \ - 2	5 ²	2 ⁵	$\overline{2^5}$
$(-5)^{-2}$	^d 1	$^{\mathrm{e}}$ -1	^f 5
	2 ⁵	5 ²	$\overline{2^{-1}}$

What is another way of representing this number raised to a negative exponent?	^a 6	b 1	^c 1
(-2) -2	$\overline{2^6}$	26	$\overline{2^6}$
$(-6)^{-2}$	^d -1	e 6	^f 1
	6 ²	$\overline{2^{-1}}$	6 ²

$$\begin{pmatrix} \text{What is another way of representing this number raised to a negative exponent?} \\ \begin{pmatrix} -9 \end{pmatrix}^{-2} \begin{pmatrix} \frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{1}{2} \\ \frac{d}{2} & \frac{1}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{d}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2} \end{pmatrix} \end{pmatrix}^{-1} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2}$$

What is another way of representing this number raised to a negative exponent?	$^{a}-1$	^b 1	^c 1
2	4 ²	$\overline{2^4}$	4 2
$(-4)^{-2}$	^d 4	$^{ extsf{e}}$ -1	^f 4
	$\overline{2^{-1}}$	24	$\overline{2^4}$