|--|

Math worksheet on 'Exponents - Negative Exponents, Negative Base (to Fraction Exponent Form) (Level 2)'. Part of a broader unit on 'Exponents - Negative and Fractional Bases and Exponents'

Learn online:

app.mobius.academy/math/units/exponents negative and fractional bases review

5	What is another way of representing this number raised to a negative exponent?	^a 1	1	° 9
	(-2)-2	2 9	<u>9</u> ²	$\overline{2^9}$
	$(-9)^{-2}$	^d -1	e 9	f -1
<u>v/</u>		2 ⁹	$\overline{2^{-1}}$	<u>9</u> 2

What is another way of representing this number raised to a negative exponent?	$\stackrel{a}{-1}$	1	^c -1
(10 ²	10 ²	$\overline{2^{10}}$
$(-10)^{-2}$	^d 10	e 1	^f 10
	210	$\overline{2^{10}}$	$\overline{2^{-1}}$

What is another way of representing this number raised to a negative exponent?	^a 2	^b 1	^c -1
(->-6	$\overline{6^{-1}}$	$\overline{2^6}$	6 ²
$(-2)^{-6}$	2	e 1	^f -1
	6 ²	6 ²	2 ⁶

What is another way of representing this number raised to a negative exponent?	^a 7	b 1	^c -1
/ − \−1	4 ⁷	4 ⁷	74
$(-7)^{-7}$	^d 7	$^{\mathrm{e}}$ -1	^f 1
	$\overline{4^{-1}}$	4 ⁷	7 4

What is another way of representing this number raised to a negative exponent?	a 1	^b 7	^c 1
- \-2	$\overline{2^7}$	$\overline{2^{-1}}$	7 2
$(-7)^{-2}$	^d 7	^e 1	f-1
	$\overline{2^7}$	$\overline{2^7}$	7 ²