Math worksheet on 'Exponents - Negative Fractional Exponents with Non-Square Integer Base -Exponent to Simplified Radical (Level 2)'. Part of a broader unit on 'Exponents - Negative and Fractional Bases and Exponents' Learn online: app.mobius.academy/math/units/exponents negative and fractional bases review/ | Find the answer when this number is raised to its exponent | a 1 | 1 | ^c 1 | |--|--------------------|------------|----------------| | - (-1) | $4\sqrt{2}$ | $\sqrt{5}$ | <u>5</u> | | $50^{(\frac{7}{2})}$ | d
1 | e 1 | f 1 | | | $\sqrt{5}\sqrt{4}$ | $\sqrt{2}$ | $3\sqrt{2}$ | | Find the answer when this number is raised to its exponent | a 1 | ^b 1 | ^c 1 | |--|--------------|----------------|----------------| | $144^{\left(\frac{-1}{2}\right)}$ | $12\sqrt{3}$ | $\overline{1}$ | 3 | | | 1 | e 1 | f
1 | | | 12 | $12\sqrt{4}$ | $12\sqrt{2}$ | | Find the answer when this number is raised to its exponent | ^a 1 | ^b 1 | 1 | |--|----------------|----------------|--------------------| | (-1) | $\sqrt{3}$ | 6 | $4\sqrt{3}$ | | $108^{(\frac{1}{2})}$ | d 1 | e 1 | f 1 | | | $2\sqrt{3}$ | $6\sqrt{3}$ | $\sqrt{5\sqrt{3}}$ | | Find the answer when this number is raised to its exponent | a 1 | b 1 | 1 | |--|----------------|---------------------------|----------------| | (-1) | $2\sqrt[3]{3}$ | $\overline{5\sqrt[3]{4}}$ | $2\sqrt[3]{4}$ | | $32^{(\frac{3}{3})}$ | ^d 1 | e 1 | ^f 1 | | | 2 | $4\sqrt[3]{4}$ | $\sqrt[3]{4}$ | | 7 Find the answer when this number is raised to its exponent | a 1 | b 1 | ^c 1 | |--|----------------|------------------------|----------------| | (-1) | $4\sqrt{2}$ | $2\sqrt{3}$ | 4 | | $48^{(\frac{1}{2})}$ | ^d 1 | e 1 | f 1 | | | $\sqrt{3}$ | $\overline{5\sqrt{3}}$ | $4\sqrt{3}$ |