

Math worksheet on 'Exponents - Negative Fractiona Exponents with Square Integer Base - Factored Exponent to Answer (Level 1)'. Part of a broader uni on 'Exponents - Fractional Bases and Exponents - Practice'

Learn online:

app.mobius.academy/math/units/exponents fractional bases and exponents practic

2	Find the answer when this factored number is
	raised to its exponent

$$(2 \cdot 2 \cdot 2 \cdot 2)^{(\frac{-1}{2})}$$

a 1	b 1	c 1	^d 1	e 1
3	4	$\overline{1}$	$\sqrt{4}$	<u>5</u>

Find the answer when this factored number is raised to its exponent

$$(3\cdot 3)^{(\frac{-1}{2})}$$

a 1	b 1	^c 1	^d 1	e 1	^f 1
$3\sqrt{3}$	$\overline{2}$	4	$3\sqrt{2}$	$\overline{1}$	3

1 Find the answer when this factored number is raised to its exponent

$$(5\cdot 5)^{(\frac{-1}{2})}$$

a 1	_	c 1	_		^f 1
3	<u>5</u>	$\sqrt{2}$	$\overline{1}$	$\overline{5\sqrt{4}}$	4

Find the answer when this factored number is raised to its exponent

$$(2\cdot 2)^{\left(\frac{-1}{2}\right)}$$

^a 1	b 1	c 1	^d 1	e 1	f 1
4	<u>5</u>	$2\sqrt{2}$	$\overline{2}$	$\overline{1}$	$2\sqrt{3}$

5 Find the answer when this factored number is raised to its exponent

$$(2\cdot 2\cdot 3\cdot 3)^{\left(\frac{-1}{2}\right)}$$

$$\begin{bmatrix} a & 1 & b & 1 & c & 1 & d & 1 & e & 1 & f & 1 \\ 6\sqrt{3} & 1 & 1 & 4 & 6 & 6 & 6\sqrt{2} & 2 & 2 \end{bmatrix}$$