

mobius

Prime Factorization - Is Number a Multiple of Both - From Variables as

Multiple of Both - From Variables as				
$1 b = 3 \cdot 5 \cdot 7^3$	Ors	$z = 2^2 \cdot 3 \cdot 7^2$		
$735 = 3 \cdot 5 \cdot 7^{2}$ $1029 = 3 \cdot 7^{3}$	Is b a multiple of both 735 and 1029?	$ 84 = 2^2 \cdot 3 \cdot 7 \\ 294 = 2 \cdot 3 \cdot 7^2 $	Is z a multiple of both 84 and 294?	
is b a multiple of 735 and 1029?	A Yes No	is z a multiple of 84 and 294?	A Yes	В No
3 $n = 2^3 \cdot 5 \cdot 7$		4 $n=2^2\cdot 5^3$		
$140 = 2^{2} \cdot 5 \cdot 7$ $40 = 2^{3} \cdot 5$	Is n a multiple of both 140 and 40?	$60 = 2^2 \cdot 3 \cdot 5$ $250 = 2 \cdot 5^3$	ls n a multiple of both 60 and 250?	
is n a multiple of 140 and 40?	A Yes No	is n a multiple of 60 and 250?	A Yes	No No
5 $x = 3^3 \cdot 5 \cdot 7$		6 $p = 2 \cdot 3^3 \cdot 7$		
$459 = 3^3 \cdot 17$ $315 = 3^2 \cdot 5 \cdot 7$	Is x a multiple of both 459 and 315?	$90 = 2 \cdot 3^2 \cdot 5$ $126 = 2 \cdot 3^2 \cdot 7$	Is p a multiple of both 90 and 126?	
is x a multiple of 459 and 315?	A Yes No	is p a multiple of 90 and 126?	A Yes	B No
7 $z = 3 \cdot 5^2 \cdot 7^2$	·	$8_{z=2\cdot3\cdot5^2\cdot7}$		
	Is z a multiple of both 1225 and 735?	$330 = 2 \cdot 3 \cdot 5 \cdot 11 \ 150 = 2 \cdot 3 \cdot 5^{2}$	ls z a multip 330 and	
	Δ R		⊥ Λ	∣ R

is z a multiple of

1225 and 735?

No

Yes

is z a multiple of

330 and 150?

No

Yes