| Name: | | | | |-------|--|--|--| | | | | | Math worksheet on 'Prime Factorization as Exponents - 3 Factors (Level 1)'. Part of a broader unit on 'Factoring and Greatest Common Factor - Intro' Learn online: app.mobius.academy/math/units/factoring and greatest common factor intro/ | 1 Show the prime factorization of this number as exponents | $2^2 \cdot 7 \cdot 13$ | $\begin{array}{c} \mathbf{b} \\ 2^2 \cdot 7 \cdot 11 \end{array}$ | |--|---------------------------------------|---| | 28 | $\overset{\mathbf{c}}{2}^2 \cdot 7^2$ | $\overset{\scriptscriptstyle{d}}{2}^2\cdot 7$ | | | $\overset{\mathtt{e}}{2}^3 \cdot 7$ | $2^2 \cdot 5 \cdot 7$ | | 2 Show the prime factorization of this number as exponents | a
2 · 3 · 5 | b 2 · 3 ² · 5 | |--|----------------------------|----------------------------| | 30 | c
2 · 3 · 5 · 7 | d
2 · 3 · 5 · 11 | | | e
2 · 3 · 5 · 13 | $2^2 \cdot 3 \cdot 5$ | | 3 Show the prime factorization of this number as exponents | ^a 2 ³ | b
2 ³ · 7 | c 2 ³ · 13 | |--|-----------------------------|-------------------------|------------------------------| | 8 | d | е | f | | | $2^3 \cdot 11$ | $2^3 \cdot 5$ | $2^3 \cdot 3$ | | | | | | | 4 Show the prime factorization of this number as exponents | $\begin{bmatrix} \mathbf{a} \\ 2^2 \cdot 3 \cdot 13 \end{bmatrix} 2^{\mathbf{b}} 3 \cdot 3$ | |--|---| | 12 | $\overset{\mathbf{c}}{2}^2 \cdot 3^2 \overset{\mathbf{d}}{2}^2 \cdot 3 \cdot 7$ | | | $2^2 \cdot 3 \cdot 5$ $2^2 \cdot 3$ | | 5 Show the prime factorization of this number as exponents | $\overset{\mathbf{a}}{2}^2 \cdot 3 \cdot 5 \overset{\mathbf{b}}{2}^3 \cdot 5$ | |--|---| | 20 | $\overset{\mathbf{c}}{2^2} \cdot 5 \cdot 7 \overset{\mathbf{d}}{2^2} \cdot 5$ | | | e f $2^2 \cdot 5 \cdot 11$ $2^2 \cdot 5 \cdot 13$ | | 6 Show the prime factorization of this number as exponents | a
2 · | 5 ² | · 13 | b 2 · | 5 ² | · 11 | |---|-----------------|-----------------------|-------------------------|-----------------------------|-----------------------|-----------------------| | 50 | 2 | • | 5 ² | ^d 2 ² | • | 5 ² | | | e
2 · | 3 | · 5 ² | ^f 2 | • | 5 ³ |