Mobius Math Club

Name:

а

2 5

b

С

 $\cdot \frac{3}{4} \frac{4}{3} \cdot \frac{2}{5} \frac{5}{2} \cdot \frac{4}{3}$

1 Find the fraction multiplication

that is the equivalent of this

division

Math worksheet on 'Fraction Division Improper Equi

Math worksheet on 'Fraction Division - Improper - Equivalent Multiplication (Level 2)'. Part of a broader unit on 'Fraction Division - Intro' Learn online: app.mobius.academy/math/units/fractions_division_intro/					$\frac{3}{2}$	$\div \frac{1}{4}$	d 3 4	$\cdot \frac{5}{2} \frac{5}{2}$	3	$\frac{2}{5} \cdot \frac{4}{3}$
$\begin{array}{c} \textbf{2} \text{Find the fraction multiplication} \\ \text{that is the equivalent of this} \\ \text{division} \end{array} \\ \begin{array}{c} \textbf{4} \\ \textbf{-} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{6} \\ \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{8} \\ \textbf{4} \\ \textbf{4} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{4} \\ \textbf{4} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{8} \\ \textbf{4} \\ \textbf{4} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{8} \\ \textbf{7} \\ \textbf{4} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{8} \\ \textbf{7} \\ \textbf{4} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \\ \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \\ \begin{array}{c} \textbf{7} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \textbf{7} \end{array} \\ \end{array} $	$ a \\ \frac{8}{4} \cdot \frac{4}{7} \\ d \\ \frac{7}{4} \cdot \frac{4}{8} $	e 4	$ \frac{7}{4} \frac{4}{7} $ $ \frac{1}{4} \frac{1}{7} $ $ \frac{1}{4} \frac{1}{4} $	$\frac{4}{8}$	that is the	action multiplication equivalent of thi division	$\frac{3}{8}$	$\begin{array}{c} \mathbf{b} \\ 8 \\ 7 \\ 2 \\ 2 \\ 2 \\ 8 \\ 8 \end{array}$	$\cdot \frac{7}{8}$ $\cdot \frac{8}{2}$	c $\frac{8}{2} \cdot \frac{8}{7}$ f $\frac{2}{8} \cdot \frac{7}{8}$
$\begin{array}{c} \textbf{4} \ \text{Find the fraction multiplication} \\ \text{that is the equivalent of this} \\ \text{division} \end{array} \\ \begin{array}{c} \hline 7 \\ \hline 6 \\ \hline \end{array} \\ \begin{array}{c} 6 \\ \hline \end{array} \\ \begin{array}{c} \hline 8 \\ \hline \end{array} \end{array}$	a 8/6 · 7 6/7 6/7 6/8	6 6 6	$ \begin{array}{c} \mathbf{c} \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 6 \\ 7 \\ 7 \\ 6 \\ 7 \\ \mathbf$	7 6 8 6	that is the	action multiplication equivalent of thi division		$ \frac{5}{3} \frac{1}{9} $ e $ \frac{1}{9} 9 $. <u>5</u> . <u>3</u> . <u>5</u>	$\begin{array}{c} c\\ \frac{3}{5} \cdot c\\ \frac{1}{9} \cdot \frac{3}{5} \end{array}$
	a $\frac{2}{3} \cdot \frac{8}{2}$ d $\frac{2}{8} \cdot \frac{3}{2}$	e 3	$\begin{array}{c} c\\ \frac{2}{3} \\ \frac{8}{2} \\ \hline \\ \frac{2}{8} \\ \frac{8}{2} \end{array}$	$\frac{3}{2}$	that is the	action multiplication equivalent of thi division		$\begin{array}{c} \mathbf{b} \\ \cdot 4 4 \\ \cdot \frac{\mathbf{e}}{4} \\ \cdot \frac{1}{4} \frac{4}{8} \end{array}$	$\cdot \frac{4}{8}$ $\cdot \frac{1}{4}$	