

Math worksheet on 'Fraction Manipulation Algebra - Orientation 3 (Level 3)'. Part of a broader unit on 'Algebra Basic Concepts - Practice'

Learn online: app.mobius.academy/math/units/algebra basic concepts practice/

1 Solve the fraction for the '?' in terms of the variables and reduce.	$egin{array}{c} {\sf a} \ {\sf 2}a \cdot b \end{array}$	$^{\mathtt{b}}\!2a$	$^{\mathtt{c}}a$
\boldsymbol{b}	3	$\overline{3b}$	$\overline{6b}$
$2a=\frac{3}{22}$	^{d}b		
3!	$\overline{6a}$		

2 Solve the fraction for the '?' in terms of the variables and reduce.	^{a}b	$^{\mathtt{b}}\!3b$	$^{\mathtt{c}}4b$
3 <i>b</i>	\overline{a}	$\overline{4a}$	$\overline{3a}$
$4a = \frac{3}{2}$	$^{ t d}\! 3a$		
	<u>4b</u>		

3 Solve the fraction for the '?' in terms of the variables and reduce.	$egin{array}{c} {\sf a} \\ b \end{array}$	$^{ t b}\!4a$	$egin{array}{c} {\sf 4}a\cdot b \end{array}$
4 <i>b</i>	$\overline{16a}$	$\overline{4b}$	4
$4a = \frac{10}{2}$	$^{\scriptscriptstyle d}b$	$egin{array}{c} \mathbf{e} \ 16a \cdot b \end{array}$	
	\overline{a}	$10a \cdot b$	

4 Solve the fraction for the '?' in terms of the variables and reduce.	$^{ t a}\!4a$	$^{\mathtt{b}}b$	$^{\mathtt{c}}b$
h	$\overline{2b}$	$\overline{8a}$	a
$4a = \frac{3}{22}$	$^{ t d}4b$		
2!	$\overline{2a}$		

Solve the fraction for the '?' in terms of the variables and reduce.
$$a b 4b a 5$$
 $a b 4b a 5$ $a b 4b a 5$

Solve the fraction for the '?' in terms of the variables and reduce.
$$\frac{4a}{2c}$$
 $\frac{a}{a}$ $\frac{a}{2c}$ $\frac{a}{a}$ $\frac{c}{a}$ $\frac{2c}{a}$ $\frac{2c}{a}$ $\frac{a}{4a}$ $\frac{c}{a}$ $\frac{c}{a}$

7 Solve the fraction for the '?' in terms of the variables and reduce.	$^{\mathtt{a}}3b$	$^{\scriptscriptstyle{b}}a$	$egin{array}{c} \mathbf{c} \ a \cdot b \end{array}$
3 <i>b</i>	$\overline{3a}$	<u>9b</u>	9
$a=\frac{3}{2}$	^{d}b		
3?	\overline{a}		