Name:

Math worksheet on 'Geometry of Triangles -Equilateral, Angle Rule (Level 1)'. Part of a broader unit on 'Geometry - Isosceles and Equilateral Triangles'

Learn online:

app.mobius.academy/math/units/geometry_triangles_isosceles_equilateral_intro/

Given the side lengths, what do we know about this triangle's angles?

- \mathbf{a} Q = R but not S
- \mathbf{b} R = S = Q
- \mathbf{C} R = S but not Q
- \mathbf{d} S = Q but not R
- e R, S, and Q are

Given the side lengths, what do we know about this triangle's angles?

- **a** S, Q, and R are
- \mathbf{b} S = Q but not R
- C Q = R but not S
- R = S but not Q
- \mathbf{e} S = Q = R

Given the side lengths, what do we know about this triangle's angles?

- \mathbf{a} S = Q but not R
- **b** R, S, and Q are
- \mathbf{C} R = S but not Q
- \mathbf{d} Q = R but not S
- \mathbf{e} R = S = Q

Given the side lengths, what do we know about this triangle's angles?

- \mathbf{a} S = Q but not R
- \mathbf{b} R = S but not Q
- Q = R = S
- Q = R but not S
- e Q, R, and S are
 - different

Given the side lengths, what do we know about this triangle's angles?

- **a** Q = R but not S
- **b** R = S but not Q
- c R, S, and Q are
- \mathbf{d} R = S = Q
- **e** S = Q but not R

Given the side lengths, what do we know about this triangle's angles?

- \mathbf{a} Q = R but not S
- **b** S = Q = R
- C R = S but not Q
- d S, Q, and R are
- \mathbf{e} S = Q but not R

Given the side lengths, what do we know about this triangle's angles?

- Q = R = S
- **b** Q = R but not S
- \mathbf{C} S = Q but not R
- **d** Q, R, and S are
- **e** R = S but not Q