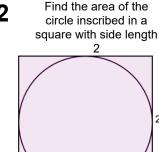
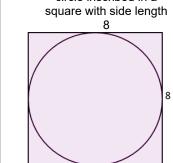


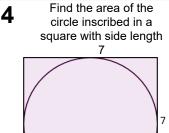
mobius


Inscribed Circle in Square - Square Side Length to Circle Area

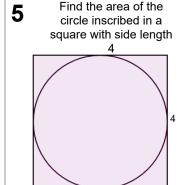

1	Find the area of the circle inscribed in a square with side length		
	6		
	6		
3	Find the area of the circle inscribed in a square with side length		

$$\left(\frac{3}{2}\right)^{2}\pi 4\sqrt{18} \frac{18^{2}}{2}\pi$$

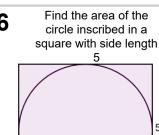
$$\frac{18}{\pi} \left(\frac{1}{\sqrt{36}} \right)^2 \pi \left(\frac{6}{2} \right)^2 \pi$$

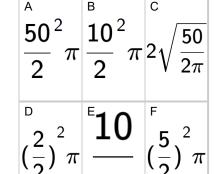


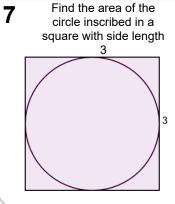
vith side length	$\frac{2}{\pi}$	$(\sqrt{2})^2\pi$	$\left(\frac{2}{2}\right)^2\pi$
2	D	E	F
	4π	$\left(\frac{1}{2}\right)^2\pi$	$2\sqrt{\frac{4}{2\pi}}$


$$\frac{16^{2}}{2}\pi \left(\frac{4}{2}\right)^{2}\pi \left(\sqrt{64}\right)^{2}\pi$$

$$\frac{64^{2}}{2}\pi^{2}\sqrt{\frac{128}{2}}(\frac{8}{2})^{2}\pi$$




$$2\sqrt{\frac{49}{2}}\frac{98^{2}}{2}\pi(\frac{3}{2})^{2}\pi$$


 $4\sqrt{25}\left(\frac{7}{2}\right)^2\pi\frac{98}{2}\sqrt{2}$

$$\frac{1}{2\sqrt{\frac{8}{2\pi}}} \frac{32}{\pi} \left(\frac{4}{2}\right)^{2} \pi$$

