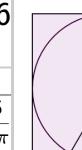
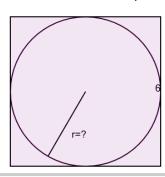


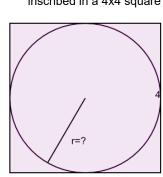
mobius

Inscribed Circle in Square - Square Side **Length to Circle Radius**

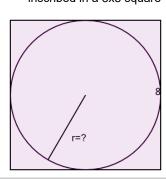




Α	ВЭ	С
$\frac{18}{2}\sqrt{2}$	3 2	$4\sqrt{6}$

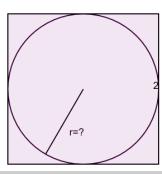

2	Find the radius of the circle
	inscribed in a 6x6 square

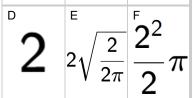
Α	В	c_{-2}
36 ²	18 ²	12
$\frac{\pi}{2}$	${2}$ π	π

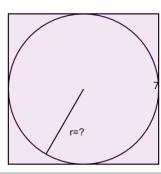

$$\frac{12}{2} \begin{bmatrix} 6 & \frac{72^2}{2} \end{bmatrix}$$

Find the radius of the circle inscribed in a 4x4 square

$$\frac{4}{2} \left| \frac{16}{2} \sqrt{2} \right|^{c} \frac{8}{2}$$


$$\begin{bmatrix} 2\sqrt{\frac{16}{2\pi}} & 2\sqrt{\frac{8}{2}} \end{bmatrix}$$


$$\frac{1}{2}\sqrt{\frac{32}{2}} \frac{1}{2} \frac{1}{2} \frac{1}{2}$$



Find the radius of the circle inscribed in a 2x2 square

$$\frac{2}{2} \left| \frac{1}{4} \sqrt{8} \right|^{c} \frac{4}{2}$$

$$\left| \frac{^{6}98}{\pi} \right|^{8} 49 \left| \frac{^{c}}{^{2}} \sqrt{2} \right|^{2}$$

$$\frac{7}{2} \frac{14}{2} \frac{14^{2}}{2} \pi$$

Find the radius of the circle inscribed in a 5x5 square

$$\frac{^{\mathsf{A}}10}{2} \left|_{2\sqrt{\frac{50}{2\pi}}}^{\mathsf{B}} \right|_{2\sqrt{\frac{10}{2\pi}}}^{\mathsf{C}}$$

D F	E	F
5	10	50 ²
	13π	$-\pi$
2		2 "
_		_