Name:			

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 1)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

Add or subtract multiples of the second equation to the first equation to form a single solvable equation	72z=7	18z = 77
$9c + 8z = 77 \ -9c + 10z = -5$	$egin{aligned} \mathbf{c} \ 18z = 18 \end{aligned}$	$egin{aligned} \mathbf{d} \ 18z = 72 \end{aligned}$
z=?	-5z = 77	72z = 18

2 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$oldsymbol{a}{14m}=126$	$oldsymbol{b}$ 126 $m=14$
$\begin{vmatrix} 8y + 5m = 117 \\ -8y + 9m = 9 \end{vmatrix}$	$oldsymbol{c}$ 14 $m=117$	$oldsymbol{ ext{d}}{126} m=12$
m = ?	e $14m=14$	$oldsymbol{f} 9m=117$

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$oldsymbol{1}{1}{3}{m}=oldsymbol{1}{3}$	13m = 26
$oxed{6n + 8m = 28} \ -6n + 5m = -2$	26m=5	$egin{aligned} extbf{d} \ 26m = 13 \end{aligned}$
m = ?	$oldsymbol{e}$ 13 $m=28$	$\begin{array}{c} \mathbf{f} \\ -2m = 28 \end{array}$

4 Add or subtract multiples of the second equation to the first equation to form a single solvable equation		$egin{array}{l} \mathbf{b} \ 13c = 20 \end{array}$
$egin{array}{l} 7c+2n=20 \ 6c-2n=6 \end{array}$	$oldsymbol{c}{13}{c}=13$	$rac{ extsf{d}}{26c}=13$
c = ?	6c=20	26c = 5

5 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$16z = 16$$
 $16z = 62$ $16z = 62$

6 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$-46n=74$$
 $14n=74$ $-9r+4n=-46$ $n=7$ $n=$

7 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	7p=21	7p=55
$egin{array}{c} 7y + 2p = 55 \ -7y + 5p = -34 \ \end{array}$	$egin{array}{c} { t c} { t 21} p = { t 6} \end{array}$	$^{ extsf{d}}21p=7$
p=?	e $-34p = 55$	7p=7