Name	•
Marine	

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 1)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

1 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} extstyle 14n = 14 \end{aligned}$	$egin{aligned} \mathbf{b} \ 14n = 28 \end{aligned}$
$9r+10n=74 \ -9r+4n=-46$	c $-46n = 74$	$egin{aligned} extsf{d} \ 14n = 74 \end{aligned}$
n = ?	$rac{e}{28n}=5$	128n = 14

2 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} \mathbf{a} \ 19b = 65 \end{aligned}$	$egin{aligned} \mathbf{b} \ 84b = 21 \end{aligned}$
$egin{array}{c} 11b + 3p = 65 \ 10b - 3p = 19 \ \end{array}$	84b = 7	$rac{ extsf{d}}{21b}=65$
b = ?	$rac{ extbf{e}}{21b}=84$	f

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	a $43p=55$	$egin{array}{c} \mathbf{b} \ 14p = 14 \end{array}$
$egin{array}{c} 5p + 10b = 55 \ 9p - 10b = 43 \ \end{array}$	$egin{array}{c} { t c} { t 14} p = 98 \end{array}$	$egin{array}{c} exttt{d} \ 14p = 55 \end{array}$
p=?	$oldsymbol{e}{98p}=14$	98p = 10

4 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$15n=69$$
 $45n=15$ $15n=69$ $45n=15$ $15n=69$ $15n=15$ 1

6 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$-25d=90$$
 $13d=90$ $7d+11r=90$ $6d-11r=-25$ $d=7$ $d=$

7 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	78z = 9	13z = 78
$egin{array}{l} 8z + 4p = 60 \ 5z - 4p = 18 \end{array}$	$egin{aligned} \mathbf{c} \ 13z = 13 \end{aligned}$	$rac{ extsf{d}}{13z}=60$
z = ?	е	18z = 60