Name:			

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 1)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

Add or subtract multiples of the second equation to the first equation to form a single solvable equation		b $-80c = 120$
$egin{array}{c} 12c+12p=120 \ 8c-12p=-80 \end{array}$	$rac{ extsf{c}}{20c}=20$	$rac{ extsf{d}}{20c}=40$
c = ?	е	40c = 20

2 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	a $14p=14$	$egin{aligned} extbf{b} \ 14p = 70 \end{aligned}$
$egin{array}{c} 9p + 12r = 105 \ 5p - 12r = -35 \ \end{array}$	$egin{aligned} \mathbf{c} \ 14p = 105 \end{aligned}$	70p=8
p=?	$oldsymbol{e}$ $-35p=105$	70p = 14

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	7p=55	7p=7
$egin{array}{c} 7y + 2p = 55 \ -7y + 5p = -34 \ \end{array}$	7p=21	$oldsymbol{d}$ $-34p=55$
p = ?	$\stackrel{ extbf{e}}{21}p=6$	$^{f}21p=7$

4 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$13d=13$$
 $65d=13$ $7d+11r=90$ $6d-11r=-25$ $d=7$ $d=7$

5 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} \mathbf{a} \ 16 m = 80 \end{aligned}$	$egin{array}{c} \mathbf{b} \ 80m = 8 \end{array}$
7m + 4b = 59 $9m - 4b = 21$	$oldsymbol{c}{80} m = oldsymbol{16}{}$	$rac{ extsf{d}}{21m}=59$
m = ?	$egin{aligned} \mathbf{e} \ 16m = 59 \end{aligned}$	16m = 16

6 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} extbf{a} \ 19b = 65 \end{aligned}$	$egin{array}{c} \mathbf{b} \ 21b = 84 \end{array}$
$egin{array}{c} 11b + 3p = 65 \ 10b - 3p = 19 \ \end{array}$	$egin{array}{c} { t c} { t 21} b = { t 21} \end{array}$	84b=21
b = ?	$rac{ extsf{e}}{21b}=65$	84b = 7

7 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{array}{c} {\sf a} \ {\sf 28}n = {\sf 5} \end{array}$	$egin{aligned} extstyle extstyle$
$egin{array}{c} 9r+10n=74 \ -9r+4n=-46 \ \end{array}$	$oldsymbol{ exttt{c}}{ exttt{14}} n = exttt{14}$	$rac{ extsf{d}}{28n}=14$
n = ?	e $-46n = 74$	$egin{aligned} \mathbf{f} \ 14n = 28 \end{aligned}$