

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 2)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

а	0y=16
b	2y + 0y - 8 = 16
C	8y = 8
d	16y = 5
е	16y = 8
f	8y = 16
	b c d

2 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	_	70p = 10
$egin{array}{c} 12n + 2p = 86 \ -6n + 4p = -8 \ \end{array}$	$egin{aligned} \mathbf{c} \ 10p = 70 \end{aligned}$	$egin{array}{c} extbf{d} \ 10p = 10 \end{array}$
p = ?	е	70p = 10

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation		66x=9
$\begin{vmatrix} 2x + 12b = 96 \\ 3x - 4b = -10 \end{vmatrix}$	$oldsymbol{c} = -10x = 96$	$egin{aligned} extsf{d} \ 66x = 11 \end{aligned}$
x = ?	$egin{aligned} \mathbf{e} \ 11x = 66 \end{aligned}$	$egin{aligned} 1 &$

5 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} extbf{14} z = extbf{34} \end{aligned}$	$egin{array}{c} \mathbf{b} \ 14z = 14 \end{array}$
$\begin{vmatrix} 6y + 8z = 34 \\ -2y + 2z = -2 \end{vmatrix}$	$egin{array}{c} \mathbf{c} \\ 14z = 28 \end{array}$	$\begin{array}{c} \mathbf{d} \\ -2z = 34 \end{array}$
z=?	$egin{array}{c} \mathbf{e} \ 28z = 14 \end{array}$	28z = 5

6 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} \mathbf{a} \ 20y = 10 \end{aligned}$	b $-16y = 52$
$\begin{vmatrix} 2y + 6n = 52 \\ 4y - 3n = -16 \end{vmatrix}$	${f 20}y={f 5}$	$egin{aligned} extbf{d} \ 10y = 52 \end{aligned}$
y = ?	е	$egin{aligned} \mathbf{f} \ 10y = 10 \end{aligned}$

7 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$oldsymbol{a}{105}y=10$	
$9y + 4b = 87 \ 3y - 2b = 9$	$oldsymbol{ ext{c}}{ ext{105}} y = 15$	$egin{aligned} extsf{d} \ 15y = 15 \end{aligned}$
y = ?	$oldsymbol{e}$ $15y=105$	$rac{ extsf{f}}{15y}=87$