Name:			

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 2)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$oxed{12} d = 84$	$egin{aligned} \mathbf{b} \ 12d = 114 \end{aligned}$
$egin{array}{c} 12b + 6d = 114 \ -4b + 2d = -10 \ \end{array}$	$oldsymbol{c}$ 84 $d=12$	$egin{aligned} extbf{d} \ 12d = 12 \end{aligned}$
d=?	е	$oldsymbol{f} -10d = 114$

2 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$27p=6$$
 $9p=33$ $2p+6b=33$ $2p-3b=-3$ $p=7$ $p=7$ $p=9$ $p=$

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$14z=14$$
 and $14z=34$ and $14z=34$ and $14z=34$ and $14z=34$ and $14z=28$ and $14z=34$ and

Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$a$$
 $-18p = 84$ $48p = 16$ $c + 10p = 84$ $-3c + 3p = -18$ $p = 7$ $p = 84$ $p = 16$ $p = 1$

5 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$64x=11-30x=124$$
 $2x+12m=124$ $3x-6m=-30$ $x=?$ 6 $8x=124$ $8x=64$

Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$4p+4n=28$$

$$-2p+5n=0$$

$$n=?$$

$$n=1$$

$$n=1$$

$$a \qquad 28n=5$$

$$b \qquad 14n=28$$

$$a \qquad 0n=28$$

$$c \qquad 0n=28$$

$$d \qquad 4n+0n-14=28$$

$$e \qquad 28n=14$$

$$f \qquad 14n=14$$

7 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{aligned} \mathbf{a} \ 14p = 126 \end{aligned}$	$egin{aligned} extsf{b} \ 14p = 14 \end{aligned}$
$egin{array}{c} 10n + 2p = 48 \ -5n + 6p = 39 \ \end{array}$	39p=48	$egin{aligned} extbf{d} \ 126p = 12 \end{aligned}$
p = ?	е	$egin{aligned} \mathbf{f} \ 14p = 48 \end{aligned}$