

Math worksheet on 'Linear Equation Systems -Simple Addition To Equation (Level 3)'. Part of a broader unit on 'Algebra Systems of Equations -Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

Add or subtract multiples of the second equation to the first equation to form a single solvable equation	a $-15c = -15$	$oldsymbol{b}{102}c=69$
$egin{array}{c} 5c + 6n = 69 \ 10c + 3n = 102 \ \end{array}$	$oldsymbol{c} -15c = -135$	$oldsymbol{d} -135c = 12$
c = ?	$oldsymbol{e} -15c = 69$	$oldsymbol{f}$ $-135c=-15$

3 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$30c=72$$
 $-18c=6$ $12c+6b=72$ $-6c=72$ $-6c=-6$ $c=72$ $c=7$ $c=7$

4 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$11z+10m=52\\12z+5m=39\\z=?$$

5 Add or subtract multiples of the second equation to the first equation to form a single solvable equation	$egin{array}{c} {\sf a} \\ {\sf 18}z = {\sf 3} \end{array}$	3z=3
$egin{array}{c} 12z + 12b = 96 \ 3z + 4b = 26 \ \end{array}$	$egin{array}{c} {\sf c} \ 26z = 96 \end{array}$	$egin{array}{c} exttt{d} \ 18z = 9 \end{array}$
z = ?	3z = 96	3z = 18

6 Add or subtract multiples of the second equation to the first equation to form a single solvable equation
$$-2p=-2$$
 $-8p=-2$ $8p+12m=56$ $p+6m=32$ $p=?$ $p=7$ $p=7$

7 Add or subtract multiples of the	a	b
second equation to the first equation to form a single solvable equation	2d = 56	20d = 56
$egin{array}{l} 6d+4z=56\ 2d+2z=20 \end{array}$	$\overset{\mathtt{c}}{2}d=2$	$rac{ extsf{d}}{2d}=16$
d=?	16d=2	$egin{aligned} 1 &$