Name:			

Math worksheet on 'Linear Equation Systems -Simple Number Substitution To Equation (Level 2)'. Part of a broader unit on 'Algebra Systems of Equations - Intro'

Learn online: app.mobius.academy/math/units/algebra systems of equations intro/

)	Substitute the given number for the variable to form a single solvable equation	$egin{aligned} {f 5}p + {f 5} &= {f 114} \ {f 3}p + {f 11} &= p \end{aligned}$
	$egin{aligned} 5p + 9m &= 114 \ m &= 11 \end{aligned}$	$egin{array}{c} {f c} \\ {f 5}p+11=114 \\ {f 5}p-6=114 \\ \end{array}$
	p = ?	$egin{aligned} \mathbf{e} \ 5p+99 &= 114 \ 6p+11 &= p \end{aligned}$

2 Substitute the given number for the variable to form a single solvable equation	$oldsymbol{a} = \mathbf{b}$	b $8d + 4 = 48$
8d+4p=48 $p=8$	$oldsymbol{c}$ $2d+8=d$	d $8d - 5 = 48$
d = ?	e $8d + 32 = 48$	8d + 8 = 48

3 Substitute the given number for the variable to form a single solvable equation	8m + 4 = m	b $9m + 10 = 64$
$\begin{vmatrix} 9m-2p=64 \\ p=4 \end{vmatrix}$	$oldsymbol{c} 9m + 8 = 64$	d $9m + 4 = 64$
m = ?	\mathbf{e} $11m + 4 = m$	f $9m - 8 = 64$

5 Substitute the given number for the variable to form a single solvable equation	a $6c + 5 = 26$	b $6c + 8 = 26$
6c - 2y = 26 y = 5	\mathbf{c} $9c + 5 = c$	$egin{aligned} \mathbf{d} \ 6c + 5 = c \end{aligned}$
c = ?	e $6c + 10 = 26$	f $6c - 10 = 26$

6 Substitute the given number for the variable to form a single solvable equation
$$8m+11=137$$
 $8m+121=137$ $8m+121=137$ $m+11=m$ $m=11$ $m=11$

7 Substitute the given number for the variable to form a single solvable equation	8m + 72 = 112	b 8 <i>m</i> – 8 = 112
$egin{array}{c} 8m+6b=112 \ b=12 \end{array}$	$oldsymbol{c} 8m + 7 = 112$	$oldsymbol{d}$ 8 $m+12=m$
m=?	e $8m + 12 = 112$	$\mathbf{f} \\ 5m + 12 = m$