Name:							

Math worksheet on 'Logarithms - Meaning, Words to Equation as Values (Decimals) (Level 1)'. Part of a broader unit on 'Logarithms - Intro'

Learn online: app.mobius.academy/math/units/logarithms intro/

1	Which logarithm equation shows this?	
To result in 142, you would raise 5 to the power of 3	$\log_5 142 = 3.08 \log_{142} 3.08 = 100$	5
	$\log_{3.08} 142 = 5 \log_{142} 5 = 3.0$	8

2	Which logarithm equation shows this?
To result in 481, you would raise 10 to the power of 3	$egin{aligned} \mathbf{a} & \mathbf{b} & \mathbf{b} \\ \log_{2.68} 481 &= 10 & \log_{2.68} 10 = 481 \\ \mathbf{c} & \mathbf{d} & \log_{481} 10 = 2.68 \end{aligned}$

3	Which logarithm equation shows this?
To result in 496, you would raise 9 to the power of 3	$egin{aligned} \mathbf{\hat{g}}_{9} & 496 = 2.82 & \log_{496} 9 = 2.82 \\ \mathbf{\hat{g}}_{2.82} & 9 = 496 & \log_{496} 2.82 = 9 \end{aligned}$

4	Which logarithm equation shows this?
To result in 227, you would raise 4 to the power of 4	$\log_{227} 3.91 = 4 \log_{3.91} 227 = 4$
	$\log_{227} 4 = 3.91 \log_{3.91} 4 = 227$
	$\log_4 227 = 3.91$

5		
	Which logarith shows t	•
To result in 157, you would raise 10 to the power of 2	$\log_{10} 157 = 2.2$	$\log_{157} 2.2 = 10$
	$\log_{2.2} 10 = 157$	$\log_{157} 10 = 2.2$

6	Which logarith	•
To result in 139, you would raise 10 to the power of 2	$\log_{2.14} 139 = 10$	$\log_{10} 139 = 2.14$
	$\log_{2.14} 10 = 139$	$\log_{139} 10 = 2.14$

7	Which logarithm equation shows this?
To result in 279, you would raise 5 to the power of 3	$\log_{3.5} 5 = 279 \log_5 279 = 3.5$
	$\log_{279} 3.5 = 5$