Mobius Math Club

Math worksheet on 'Matrices - Row Operations for Finding Inverse of Matrix (3x3) (Level 1)'. Part of a broader unit on 'Matrices'

Learn online: app.mobius.academy/math/units/matrices/

2	Multiply row 2 of the augmented matrix by whatever factor is needed to solve for that row										
		Γ5	of the	inve 9	rse i	matri 1	ix 0	0	7		
		0	0.33	0	i	0	1	0			
		9	7	6	-	0	0	1			
а	5 0 9	6 9 0.11 0 7 6	1 0 0 0 2.25 0 0 0 1		b	[5 0 9	6 6 9 0 0.11 0 7 6	1 0 0 5.25 0 0	5 0 1		
C	5 0 9	6 9 0.11 0 7 6	1 0 0 0 -2.25 0 0 0 1		d		5 6 9 0 1 0 9 7 6	1 0 0	0 0 1		

5 6 9 | 1 0 0 0 0.11 0 | 0 3.75 0 9 7 6 | 0 0 1

- 6 Add row 3 to row 2 of the augmented matrix as many times as needed to solve for row 2 of the inverse matrix $\begin{bmatrix}
 9 & 3 & 2 & | & 1 & 0 & 0 \\
 0 & 1 & -9 & | & 0 & 1 & 0 \\
 0 & 0 & 3 & | & 0 & 0 & 1
 \end{bmatrix}$ a $\begin{bmatrix}
 9^{\frac{3}{3}} & 2 & | & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & 1 & 0 \\
 0 & 1 & 0 & | & 0 & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 0 & 1 & 0 & 0
 \end{bmatrix}$ b $\begin{bmatrix}
 9^{\frac{3}{3}} & 2 & | & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 0 & | & 0 & 1
 \end{bmatrix}$ c $\begin{bmatrix}
 9^{\frac{3}{3}} & 2 & | & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 1 & | & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 1 & | & 0 & | & 0
 \end{bmatrix}$ e $\begin{bmatrix}
 9^{\frac{3}{3}} & 2 & | & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 1 & | & 0 & | & 0 \\
 0 & 0 & 3 & | & 0 & 0 & | & 1
 \end{bmatrix}$ f $\begin{bmatrix}
 9^{\frac{3}{3}} & 2 & | & 1 & 0 & 0 \\
 0 & 1 & 0 & | & 0 & | & 1 & | & -4.5 \\
 0 & 0 & 3 & | & & 0 & 0 & | & 1
 \end{bmatrix}$

Multiply row 3 of the augmented matrix by whatever factor is needed to solve for that row of the inverse matrix 5 1 0 0 0 6 5 3 0 1 0 0 0 0.25 0 0 1									
		0	0	0 25	l I	0	0	1	
	L	U	U	0.23	ı	U	U	_	_
a		5 5 5 3 0 0.06	1 0 0 0 1 0 0 0 6		b	[7 6 0	5 5 5 3 0 0.06	1 0 0 1 0 0	0 0 -2
C	[7	5 5 5 3 0 0.06	1 0 0 0 1 0 0 0 5		d		7 5 5 6 5 3 0 0 1	1 0 0 1 0 0	0 0 4
е	[7	5 5 5 3 0 0.06	1 0 0 0 1 0 0 0 3		f		7 5 5 6 5 3 0 0 0.06	1 0 0 1 0 0	0 0 7

- 3 Swap rows 1 and 2 of the augmented matrix to solve those rows of the inverse matrix

 \[
 \begin{bmatrix}
 0 & 1 & 0 & | & 1 & 0 & 0 \\
 1 & 0 & 0 & | & 0 & 1 & 0 \\
 7 & 7 & 4 & | & 0 & 0 & 1
 \end{bmatrix}
 \] **a** \[
 \begin{bmatrix}
 \begin{
- many times as needed to solve for row 2 of the $\begin{bmatrix} 4 & 0 & 0 & | & 1 & 0 & 0 \\ -8 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{a} \quad \begin{bmatrix} \frac{4}{0} & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 3 & 1 & 0 \\ 0 & 1 & 0 & | & 3 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{b} \quad \begin{bmatrix} \frac{4}{0} & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -3 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{c} \quad \begin{bmatrix} \frac{4}{0} & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -6 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{d} \quad \begin{bmatrix} \frac{4}{0} & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -6 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{e} \quad \begin{bmatrix} \frac{4}{0} & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 2 & 1 & 0 \\ 1 & 7 & 1 & | & 0 & 0 & 1 \end{bmatrix}$

5 Add row 1 to row 2 of the augmented matrix as

7 Swap rows 2 and 3 of the augmented matrix to