Mobius	Math	\bigcirc
เขเบบเนร	ivialii	Ciui

Name:			

Math worksheet on 'Probability Calculation - nPm No Multiplication Over Single (Level 1)'. Part of a bro 'Probability and Statistics - Permutations and Co Calculating - Intro'

Learn online:

app.mobius.academy/math/units/probability and statistics permutations and combi

What is the value of this probability expression?	a 1	^b 3	^c 1
(D) . (D)	20	$\overline{2}$	3
$\frac{\left(_{3}P_{2}\right)\cdot\left(_{5}P_{2}\right)}{_{6}P_{3}}$	^d 1	e 1	
0 3	2	_	

What is the value of this probability expression?	^a 72	^b 3 - 5	$\frac{1}{20}$
$\frac{\left(_{3}P_{2}\right)\cdot\left(_{4}P_{2}\right)}{_{5}P_{4}}$	1	e 1 Q	
3 4	60	10	

What is the value of this probability expression?	^a 1	3	° 72
$(_4P_2)\cdot(_3P_3)$	5 d 1		
₄ P ₄	<u>1</u> 24		

What is the value of this probability expression?	$\frac{4}{3}$	ь 360	°
$\frac{\left({}_{5}P_{2}\right)\cdot\left({}_{4}P_{3}\right)}{{}_{3}P_{3}}$	160	1	

What is the value of this probability expression?	$\frac{a}{2}$	ь 60	1
$\frac{\left(_{6}P_{2}\right)\cdot\left(_{2}P_{2}\right)}{_{4}P_{3}}$	^d 3 5	^e 5 - 3	

What is the value of this probability expression?	a	^b 10	²
	120	3	20
$\frac{\left(_{4}P_{3}\right)\cdot\left(_{5}P_{2}\right)}{_{4}P_{3}}$	^d 24		

What is the value of this probability expression?	a 120	^b 1 60	360
$\frac{\left({}_{2}P_{2}\right)\cdot\left({}_{3}P_{3}\right)}{{}_{5}P_{5}}$	$\frac{1}{10}$	1	