Mobius Math Club

Name:

mobius

Math worksheet on 'Pythagorean Equation from Variables - Length of Side (Integer) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras_foundations/

Find the value of 'a' in
this equation
$$a^{2} + b^{2} = c^{2}$$

$$a = ?$$

$$b = 8$$

$$c = 10$$

$$a = 6$$

$$a = 6$$

$$a = 7$$

$$a = 7$$

$$a = 6$$

$$a = 7$$

$$a = 8$$

$$a = 10$$

$$a = 80$$

 Find the value of 'b' in this equation 2 1 2 2 	a	b = 5	b	b = 156
$a^{2} + b^{2} = c^{2}$ a = 12	С	b = 4	d	b = 7
b = ? c = 13	e	b = 3	f	b = 1

6 Find the value of 'b' in
this equation
$$a^{2} + b^{2} = c^{2}$$

 $a = 3$
 $b = ?$
 $c = 5$

a $b = 4$

 $b = 15$

 $b = 15$

 $b = 15$

 $b = 3$

 $b = 3$

 $b = 5$

Find the value of 'a' in
this equation
$$a^{2} + b^{2} = c^{2}$$

 $a = ?$
 $b = 3$
 $c = 5$
a = 7
b = 3
 $a = 2$
b = 3
 $a = 2$
b = 3
 $a = 4$
b = 3
 $a = 4$
b = 3
 $a = 4$
c = 6

³ Find the value of 'a' in
this equation and the value of 'a' in
$$a^2 + b^2 = c^2$$

 $a = ?$
 $b = 12$
 $c = 13$
a = 3
b = 3
 $a = 3$
c = 3
 $a = 3$
d = 4
 $a = 2$
d = 4
 $a = 2$
f = 4
 $a = 156$

5 Find the value of 'a' in this equation $a^2 + b^2 = c^2$	a	a = 1	b	a = 3
a =?	C	a = 2	d	a = 20
$egin{array}{c} b = {f 4}\ c = {f 5} \end{array}$	e	a = 5	f	a = 9

Find the value of 'b' in
this equation
$$a^{2} + b^{2} = c^{2}$$

$$a = 6$$

$$b = 12$$

$$a = 6$$

$$b = 12$$

$$b = 16$$

$$b = 10$$

$$b = 5$$

$$b = 6$$