Name:_			

Math worksheet on 'Pythagorean Equation from Values - Length of Side (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

$$16 + 4 = c^2$$

$$\overset{ extbf{a}}{c}=\sqrt{20}\overset{ extbf{b}}{c}=\sqrt{28}\overset{ extbf{c}}{c}=\sqrt{12}$$

2 Find the radical (square root) for the value of 'c' in this equation

$$9+16=c^2$$

а	$c = \sqrt{-7}$	b	$c = \sqrt{7}$
C	$c=\sqrt{25}$		

Find the radical (square root) for the value of 'b' in this equation

$$16 + b^2 = 81$$

a	$b=\sqrt{65}$	b	$b=\sqrt{146}$
C	$b=\sqrt{227}$		

4 Find the radical (square root) for the value of 'c' in this equation

$$9 + 36 = c^2$$

а	$c=\sqrt{45}$	b	$c=\sqrt{117}$
C	$c=\sqrt{27}$		

5 Find the radical (square root) for the value of 'b' in this equation

$$36 + b^2 = 49$$

a	$b=\sqrt{85}$	b	$=\sqrt{111}$
C	$b=\sqrt{183}$	d b	$=\sqrt{13}$

6

Find the radical (square root) for the value of 'c' in this equation

$$4+4=c^2$$
 a $c=\sqrt{8}$ $c=\sqrt{0}$

7 Find the radical (square root) for the value of 'c' in this equation

$$36 + 9 = c^2$$

$$c=\sqrt{63}$$
 $c=\sqrt{45}$ $c=\sqrt{27}$