Name:			

Math worksheet on 'Pythagorean Equation from Values - Length of Hypotenuse (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

$$c=\sqrt{48}$$
 $c=\sqrt{40}$ $c=\sqrt{32}$

1 Find the radical (square root) for the value of 'c'

in this equation

2 Find the radical (square root) for the value of 'c' in this equation

$$4 + 4 = c^2$$

$$c=\sqrt{12}$$
 $c=\sqrt{0}$ $c=\sqrt{8}$

Find the radical (square root) for the value of 'c' in this equation

$$16 + 16 = c^2$$

a b
$$c=\sqrt{48}$$
 $c=\sqrt{0}$ $c=\sqrt{64}$ $c=\sqrt{32}$

4 Find the radical (square root) for the value of 'c' in this equation

$$36 + 25 = c^2$$

$$c=\sqrt{61}$$
 $c=\sqrt{86}$ $c=\sqrt{11}$

5 Find the radical (square root) for the value of 'c' in this equation

$$25 + 25 = c^2$$

а	$c=\sqrt{50}$	b	$c=\sqrt{0}$	
C	$c=\sqrt{ exttt{100}}$			

6 Find the radical (square root) for the value of 'c' in this equation

$$25 + 16 = c^2$$

$$c=\sqrt{57}$$
 $c=\sqrt{41}$ $c=\sqrt{9}$

Find the radical (square root) for the value of 'c' in this equation

$$4+16=c^2$$
 a $c=\sqrt{12}$ $c=\sqrt{20}$

7