|--|

Math worksheet on 'Pythagorean Equation from Values - Length of Hypotenuse (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

1	Find the radical	(square	root) for	the	value	of '	С
		in this ed	quation				

$$4 + 36 = c^2$$

а	$c=\sqrt{32}$	b	$c=\sqrt{40}$	
C	$c=\sqrt{112}$	d	$c=\sqrt{76}$	

2 Find the radical (square root) for the value of 'c' in this equation

$$25 + 4 = c^2$$

a
$$c=\sqrt{37}$$
 $c=\sqrt{21}$ $c=\sqrt{29}$ $c=\sqrt{33}$

$$25 + 16 = c^2$$

$$\overset{\mathtt{a}}{c}=\sqrt{41}\overset{\mathtt{b}}{c}=\sqrt{57}\overset{\mathtt{c}}{c}=\sqrt{9}$$

4 Find the radical (square root) for the value of 'c' in this equation

$$9 + 36 = c^2$$

$$c=\sqrt{27}$$
 $c=\sqrt{81}$ $c=\sqrt{45}$

5 Find the radical (square root) for the value of 'c' in this equation

$$4 + 9 = c^2$$

$$c=\sqrt{5}$$
 $c=\sqrt{13}$ $c=\sqrt{22}$

6 Find the radical (square root) for the value of 'c' in this equation

$$16 + 9 = c^2$$

$$c=\sqrt{25}$$
 $c=\sqrt{43}$ $c=\sqrt{7}$

7 Find the radical (square root) for the value of 'c' in this equation

$$25 + 36 = c^2$$

а	$c=\sqrt{97}$	b	$c=\sqrt{-11}$
C	$c=\sqrt{61}$	d	$c=\sqrt{11}$