

Math worksheet on 'Pythagorean Equation from Squares - Length of Side (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

1	Find the radical	(square root) for the value of	of 'b
		in this equation	

$$3^2 + b^2 = 8^2$$

а	$b=\sqrt{55}$	b	$b=\sqrt{183}$	
C	$b=\sqrt{119}$			

2 Find the radical (square root) for the value of 'c' in this equation

$$5^2 + 2^2 = c^2$$

$$\overset{\mathtt{a}}{c}=\sqrt{29}\overset{\mathtt{b}}{c}=\sqrt{21}\overset{\mathtt{c}}{c}=\sqrt{37}$$

Find the radical (square root) for the value of 'a' in this equation

$$a^2 + 6^2 = 7^2$$

а	$a=\sqrt{62}$	b	$a=\sqrt{111}$
C	$a=\sqrt{13}$		

4 Find the radical (square root) for the value of 'c' in this equation

$$4^2 + 4^2 = c^2$$

$$c=\sqrt{32}$$
 $c=\sqrt{0}$ $c=\sqrt{64}$

5 Find the radical (square root) for the value of 'c' in this equation

$$6^2 + 4^2 = c^2$$

$$c=\sqrt{68}$$
 $c=\sqrt{20}$ $c=\sqrt{52}$

6 Find the radical (square root) for the value of 'c' in this equation

$$2^2 + 5^2 = c^2$$

а	$c=\sqrt{21}$	$c=\sqrt{-21}$	
С	$c=\sqrt{\sf 54}$	d $c=\sqrt{29}$	

7 Find the radical (square root) for the value of 'c' in this equation

$$6^2 + 5^2 = c^2$$

a	$c=\sqrt{11}$	b	$c=\sqrt{61}$	
C	$c=\sqrt{111}$			