Name:

Math worksheet on 'Pythagorean Equation from Variables - Either Missing Length (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

Find the radical (square root) for the value of 'c' in this equation $a^2+b^2=c^2$	$c=\sqrt{25}$	$c=\sqrt{43}$	$c = \sqrt{7}$
a = 4 $b = 3$	d		
c=3	$c = \sqrt{34}$		

2 Find the radical (square root) for the value of 'c' in this equation	a	b	C
$a^2 + b^2 = c^2$	$c = \sqrt{0}$	$c=\sqrt{18}$	$c = \sqrt{36}$
a = 3			
b = 3			
c = ?			

Find the radical (square root) for the value of 'a' in this equation	$a = \sqrt{227}$	$a=\sqrt{97}$
$\begin{vmatrix} a^2 + b^2 = c^2 \\ a = ? \end{vmatrix}$	$a=\sqrt{146}$	d $a=\sqrt{65}$
b = 4		
c=9		

for the value of 'b' in this equation	$b=\sqrt{55}$	$b = \sqrt{183}$
$a^2 + b^2 = c^2$	C	
a = 3	$b=\sqrt{119}$	
b = ?		
c=8		

7 Find the radical (square root) for the value of 'c' in this equation	a	b	C
$a^2 + b^2 = c^2$	$c = \sqrt{66}$	c=41	$c = \sqrt{9}$
a = 4			
b = 5			
c = ?			