Name:	

Math worksheet on 'Pythagorean Equation from Variables - Length of Hypotenuse (Radical) (Level 1)'. Part of a broader unit on 'Pythagoras -Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

1 Find the radical (square root) for the value of 'c' in this equation	а	b	C
$a^2 + b^2 = c^2$	$c=\sqrt{16}$	$c=\sqrt{0}$	$c=\sqrt{8}$
a = 2			
b = 2			
c=?			

for the value of 'c' in this			
equation	c		
$a^2 \perp b^2 - c^2$			
a + b - c	C		

for the value of 'c' in this equation
$$c=\sqrt{-11}$$
 $c=\sqrt{61}$ $c=\sqrt{6$

$a^2 + b^2 = c^2$ $a = 6$	Find the radical (square root) for the value of 'c' in this equation
b = 6	a b
c = ?	$c = \sqrt{72} c = \sqrt{0}$

4 Find the radical (square root) for the value of 'c' in this equation	a	b	c
$a^2 + b^2 = c^2$	$c = \sqrt{34}$	$c=\sqrt{16}$	$c=\sqrt{43}$
a= 5			
b = 3			
c=?			

a^2	a	=	$b^{2} = c^{2}$ $= 2$		Find the radical (square root) for the value of 'c' in this equation			
	b	=	3		а		b	
	c	=	?		c =	$\sqrt{13}$	c =	$\sqrt{5}$

7 Find the radical (square root) for the value of 'c' in this equation	$c=\sqrt{11}$ $c=\sqrt{61}$
$a^2 + b^2 = c^2$	c d
a = 6	$c = \sqrt{111} c = \sqrt{86}$
b = 5	
c = ?	