

mobius

Pythagorean Equation from Variables -Length of Hypotenuse (Radical)

1	Find the radical (square root) for the value of 'c'					
	in this equation					
a^2	+	b^2	=	c^2		
			_			

$$c=\sqrt{29}c=\sqrt{21}c=\sqrt{33}$$

_	Find the radical (square				
2	root) for the value of 'c'				
	in this equation				
_	$a^2 + b^2 - a^2$				

A B C
$$c=\sqrt{25}\,c=\sqrt{43}\,c=\sqrt{7}$$

$$a^{2} + b^{2} = 0$$
 $a = 5$
 $b = 2$
 $c = ?$

$$a^2+b^2=c^2$$
 $a=4$ $b=3$ $c=?$

3		Find the radical (sq root) for the value of in this equation	of 'c'
	^	^	_

$$\begin{vmatrix} a & c & \sqrt{72} \end{vmatrix}_{c}^{\mathtt{B}} = \sqrt{108} \begin{vmatrix} \mathbf{4} & 2 & \mathbf{4} \\ a^2 & a^2 \end{vmatrix} = c^2$$

$$\overset{\mathbf{4}}{a}^2 + b^2 = c^2$$

Find the radical (square root) for the value of 'c' in this equation

$$a^2 + b^2 = c^2$$
$$a = 6$$

$$\stackrel{ ext{c}}{c}=\sqrt{144}\stackrel{ ext{d}}{c}=\sqrt{0}$$

$$b = 5$$

c = ?

a=3

$$\stackrel{ extsf{A}}{c}=\sqrt{34}\stackrel{ extsf{B}}{c}=\sqrt{16}$$

$$b = 6$$
 $c = 7$

$$\overset{\mathbf{5}}{a}^2 + b^2 = c^2$$
 Find for

$$a = 5$$

$$b = 3$$

$$c = ?$$

$$\overset{ extsf{A}}{c}=\sqrt{16}\overset{ extsf{B}}{c}=\sqrt{34}$$

$$a^2 + b^2 = c^2$$

$$a = 3$$

 $b = 2$

$$c = ?$$

$$\stackrel{\scriptscriptstyle\mathsf{A}}{c} = \sqrt{\mathsf{5}} \stackrel{\scriptscriptstyle\mathsf{B}}{c} = \sqrt{\mathsf{13}}$$

$$a^2 + b^2 = c^2$$
$$a = 6$$

$$\frac{a-b}{b=3}$$

$$c = ?$$

$$c = \sqrt{63}c = \sqrt{54}c = \sqrt{27}$$

D
$$c=\sqrt{45}$$

$$\int_{c=\sqrt{63}}^{\text{A}} \int_{c=\sqrt{54}}^{\text{B}} \int_{c=\sqrt{27}}^{\text{C}} a^2 + b^2 = c^2$$

$$a = 3$$

$$b = 6$$

$$c = ?$$

$$\overset{ extsf{A}}{c}=\sqrt{ extsf{45}}\overset{ extsf{B}}{c}=\sqrt{27}$$