

Math worksheet on 'Pythagorean Equation from Values - Length of Side (Squared Values) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

Find what the square of 'b' would be equal to

$$25 + b^2 = 36$$

| a | $b^2 = 11$  | b | $b^2 = 16$ |  |
|---|-------------|---|------------|--|
| C | $b^2 = 900$ | d | $b^2 = 19$ |  |
| е | $b^2=1$     | f | $b^2=121$  |  |

**2** Find what the square of 'c' would be equal to

$$16 + 4 = c^2$$

a b c d e f 
$$c^2 = 1$$
  $c^2 = 8$   $c^2 = 20$   $c^2 = 64$   $c^2 = 28$   $c^2 = 12$ 

Find what the square of 'a' would be equal to

$$a^2 + 36 = 81$$

a b c d e f 
$$a^2 = 36$$
  $a^2 = 45$   $a^2 = 54$   $a^2 = 75$   $a^2 = 22$   $a^2 = 76$ 

Find what the square of 'c' would be equal to

$$9 + 4 = c^2$$

a b c d e f 
$$c^2 = 20$$
  $c^2 = 5$   $c^2 = 4$   $c^2 = 28$   $c^2 = 13$   $c^2 = 1$ 

Find what the square of 'c' would be equal to

$$16 + 9 = c^2$$

a b c d e f 
$$c^2 = 1$$
  $c^2 = 6$   $c^2 = 25$   $c^2 = 34$   $c^2 = 7$   $c^2 = 57$ 

Find what the square of 'c' would be equal to

$$4 + 16 = c^2$$

a b c d e f 
$$c^2 = 12$$
  $c^2 = 20$   $c^2 = 36$   $c^2 = 13$   $c^2 = 49$   $c^2 = 1$ 

Find what the square of 'a' would be equal to

$$a^2 + 9 = 49$$

| a | $a^2 = 58$ | b | $a^2 = 78$  |
|---|------------|---|-------------|
| С | $a^2 = 54$ | d | $a^2 = 100$ |
| е | $a^2 = 14$ | f | $a^2 = 40$  |