

mobius

Pythagorean Equation from Values - Length of Side (Squared Values)

1 Find what the square of 'a' would be equal to

$$a^2 + 9 = 25$$

2 Find what the square of 'c' would be equal to

$$36 + 25 = c^2$$

$$\begin{vmatrix} A & B & C & D & E & F \\ a^2 = 13 & a^2 = 8 & a^2 = 6 & a^2 = 16 & a^2 = 10 & a^2 = 64 \end{vmatrix}$$

	Α	$c^2 = 75$	В	$c^2 = 28$
54	С	$c^2 = 125$	D	$c^2 = 900$
	E	$c^2 = 61$	F	$c^2 = 38$

Find what the square of 'c' would be equal to

$$36 + 16 = c^2$$

Find what the square of 'c' would be equal to

$$16 + 36 = c^2$$

Α	$c^2 = 79$	В	$c^2=31$	Α	$c^2=31$	В	$c^2 = 79$
С	$c^2 = 52$	D	$c^2=$ 41	С	$c^2 = 65$	D	$c^2 = 52$
E	$c^2=20$	F	$c^2 = 576$	E	$c^2=22$	F	$c^2 = 576$

Find what the square of 'a' would be equal to

6

4

Find what the square of 'b' would be equal to

$$a^2 + 4 = 64$$

$$25 + b^2 = 36$$

Α	$a^2 = 95$	В	$a^2 = 29$	Α	$b^2 = 11$	В	$b^2 = 900$
С	$a^2 = 49$	D	$a^2 = 60$	С	$b^2 = 19$	D	$b^2 = 16$
E	$a^2 = 115$	F	$a^2 = 62$	E	$b^2=1$	F	$b^2 = 121$

7 Find what the square of 'b' would be equal to

8

Find what the square of 'a' would be equal to

$$4 + b^2 = 49$$

$$a^2 + 4 = 25$$