

Math worksheet on 'Pythagorean Equation from Variables - Either Missing Length (Squared Values) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

Find what the square of 'b' would be equal to	$\overset{\mathtt{a}}{b}^2 = \overset{\mathtt{b}}{7}\overset{\mathtt{b}}{b}^2 = 576$
$a^2 + b^2 = c^2$	$egin{array}{c} \mathtt{c} & \mathtt{d} \ b^2 = 12b^2 = 20 \end{array}$
a=4 $b=?$	$b^{-} = 12b^{-} = 20$
c=6	$b^2 = 100$ $b^2 = 42$

Find what the square of 'c' would be equal to
$$c^2=70$$
 and $c^2=81$ and $c^2=6$ and $c^2=45$ and $c^2=101$ and $c^2=25$ a

Find what the square of 'a' would be equal to
$$a^2+b^2=c^2$$
 $a^2=144$ $a^2=46$ $a^2+b^2=c^2$ $a=7$ a

Find what the square of 'b' would be equal to
$$a^2+b^2=c^2$$
 $a=4$ $b=7$ $c=5$ $a=4$ $b=7$ $c=5$ $a=4$ $b=2$ $b^2=18$ $b^2=21$ $b^2=9$

Find what the square of 'b' would be equal to
$$a^2+b^2=c^2$$
 $a=3$ $a=3$ $b^2=1$ $b^2=9$ $a=3$ $b^2=6$ $b^2=64$ $b=7$ $c=5$ $b^2=225$ $b^2=16$

7 Find what the square of 'a' would be equal to	$oldsymbol{a}^2=1$, 296	$a^2=32$
$a^2 + b^2 = c^2$ $a = ?$	$a^2=82$	$rac{ extsf{d}}{a^2}=110$
b = 4 $c = 9$	$a^2 = 65$	$a^2 = 169$