

Math worksheet on 'Pythagorean Equation from Variables - Length of Side (Squared Values) (Level 1)'. Part of a broader unit on 'Pythagoras - Foundations'

Learn online: app.mobius.academy/math/units/pythagoras foundations/

Find what the square of 'b' would be equal to	$\overset{\mathtt{a}}{b}^2 = 55\overset{\mathtt{b}}{b}^2 = 67$
$egin{aligned} a^2+b^2=c^2\ a=3 \end{aligned}$	$\overset{\mathtt{c}}{b}^2 = 6\overset{\mathtt{d}}{b}^2 = 61$
b=? $c=8$	$b^2=576$ $b^2=27$

Find what the square of 'b' would be equal to	а	b	C
$a^2 + b^2 = c^2$	$b^2 = 68$	$b^2 = 69$	$b^2 = 2$
a= 3	d	е	f
b = ?	$b^2 = 40$	$b^2 = 10$	$b^2 = 5$
c = 7			

Find what the square of 'b' would be equal to	$egin{array}{cccc} \mathbf{a} & \mathbf{b} & \mathbf{b} \\ b^2 = 144 & b^2 = 72 \end{array}$
$egin{aligned} a^2+b^2=c^2\ a=3 \end{aligned}$	$egin{array}{c} \mathbf{c} & \mathbf{d} \ b^2 = 110 \ b^2 = 729 \end{array}$
$egin{array}{c} b=? \ c=9 \end{array}$	$b^2=78$ $b^2=30$

5 Find what the square of 'a' would be equal to
$$a^2+b^2=c^2$$
 $a^2=3$ $a^2=2$ $a^2=12$ $a=7$ $a=7$ $a=2$ $a^2=4$ $a^2=4$

Find what the square of 'b' would be equal to
$$a^2+b^2=c^2$$
 $a=5$ $b^2=54$ $a=5$ $a=5$ $b^2=11$ $b^2=19$ $c=6$ $c=5$ $c=5$

