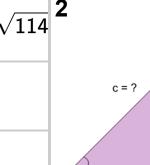
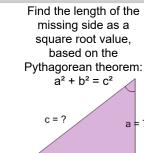
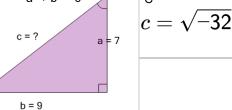

mobius

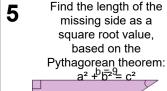

Pythagorean Theorem - Length of **Hypotenuse - Labelled Sides (Radical)**

c = ?

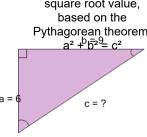

Find the length of the missing side as a square root value, based on the Pythagorean theorem: $a^2 + b^2 = c^2$

$$c=\sqrt{0}$$
 $c=\sqrt{242}$

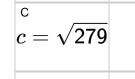

Find the length of the missing side as a square root value, based on the Pythagorean theorem: $a^2 + b^2 = c^2$

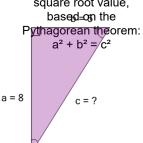

b = 11

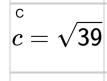
 $c=\sqrt{130}\,c=\sqrt{32}$

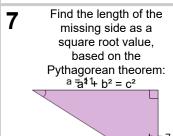


a = 11



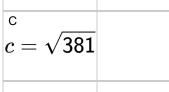

b = 6


$$\begin{vmatrix} c & \sqrt{117} \end{vmatrix}^{\mathsf{B}} = \sqrt{\mathsf{45}}$$



Find the length of the missing side as a square root value, based=on the

 $c=\sqrt{89}c=\sqrt{114}$



$$\overset{ ext{ iny A}}{c}=\sqrt{268}\overset{ ext{ iny B}}{c}=\sqrt{170}$$

$$\overset{ ext{c}}{c}=\sqrt{219}\overset{ ext{d}}{c}=\sqrt{72}$$

$$\tilde{c}=\sqrt{181}\overset{\circ}{c}=\sqrt{19}$$

c = ?