

mobius

Pythagorean Theorem - Length of Side (Radical)

13

$$z=\sqrt{217}$$
 $z=\sqrt{459}$

$$\stackrel{ extsf{c}}{z}=\sqrt{48}\stackrel{ extsf{d}}{z}=\sqrt{386}$$

$$\stackrel{ ext{ iny A}}{d}=\sqrt{239}\stackrel{ ext{ iny B}}{d}=\sqrt{95}$$

$$\tilde{d}=\sqrt{221}\overset{
m B}{d}=\sqrt{263}$$

$$\overset{ ext{c}}{d}=\sqrt{21}\overset{ ext{d}}{d}=\sqrt{142}$$

Find the length of the missing side as a square root value, based on the Pythagorean theorem

$$x = \sqrt{332} x = \sqrt{188}$$

$$\stackrel{\mathsf{A}}{y} = \sqrt{274} \stackrel{\mathsf{B}}{y} = \sqrt{443}$$

Find the length of the missing side as a square root value, based on the Pythagorean theorem

$$\overset{ extstyle }{d}=\sqrt{265}\overset{ extstyle }{d}=\sqrt{167}$$

у

$$\stackrel{\smallfrown}{p}=\sqrt{513}\stackrel{
m b}{p}=\sqrt{207}$$

$$p = \sqrt{369} p = \sqrt{63}$$

$$p=\sqrt{351}$$

Find the length of the missing side as a square root value, based on the

$$\stackrel{\smallfrown}{p}=\sqrt{427}\stackrel{
m b}{p}=\sqrt{57}$$

