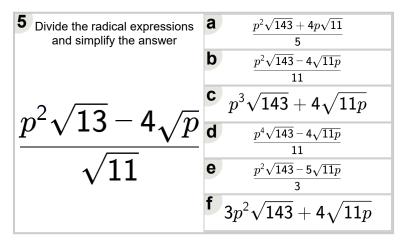
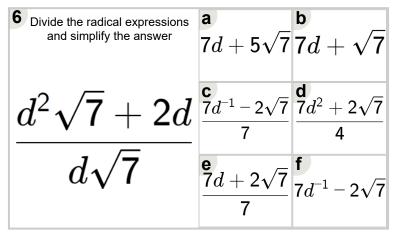

Math worksheet on 'Radicals - Divide Binomials by Monomials (Values and Variables) (Level 1)'. Part of a broader unit on 'Radicals - Division Intro'


Learn online: app.mobius.academy/math/units/radicals division intro/


Divide the radical expressions and simplify the answer	$egin{aligned} rac{d\sqrt{10d} + 4d\sqrt{2}}{2} \end{aligned}$	$\frac{d\sqrt{10d} + 4\sqrt{2d}}{2d^{-1}}$
$\frac{d\sqrt{5}+4}{}$	$\frac{\mathbf{C}}{\frac{d\sqrt{10d^{-1}} + 4\sqrt{2d}}{2d^2}}$	$\frac{\mathbf{d}}{\frac{d\sqrt{10d} + 3\sqrt{2d}}{2d}}$
$\sqrt{2d}$	$\frac{d\sqrt{10d}+\sqrt{2d}}{2d^{-1}}$	$\frac{d\sqrt{10d} + 4\sqrt{2d}}{2d}$

2 Divide the radical expressions and simplify the answer	$\frac{\mathbf{a}}{\frac{\sqrt{33p} - 4p^3\sqrt{3p}}{p^2}}$	$\frac{\mathbf{b}}{\frac{\sqrt{33p} - 4p^{-1}\sqrt{3p}}{p^2}}$
$\left \frac{\sqrt{11p} - 4p\sqrt{p}}{\sqrt{2}} \right $	$\frac{\mathbf{C}}{\sqrt{33p} - 4p\sqrt{p}}$	$\frac{d}{\sqrt{33p} - 4p\sqrt{p}} \\ \frac{4p^2}{}$
$p^2\sqrt{3}$	$\frac{e}{\frac{\sqrt{33p} + 4p\sqrt{3p}}{5p^2}}$	$\frac{\mathbf{f}}{\sqrt{33p} - 4p\sqrt{3p}}$ $\frac{3p^2}{3p^2}$

Divide the radical expressions and simplify the answer	$rac{2\sqrt{2c}+c\sqrt{10c}}{2}$	$oldsymbol{b}$ $2c\sqrt{2}+c\sqrt{10c}$
$2c + c^2\sqrt{5}$	$\frac{\mathbf{c}}{2\sqrt{2} - c\sqrt{10c}}$	$\frac{d}{\frac{2\sqrt{2c}-c^2\sqrt{10c}}{4}}$
$\sqrt{2c}$	$\frac{\mathbf{e}}{2\sqrt{2c} - c\sqrt{10c}}$	\mathbf{f} $2\sqrt{2} + c\sqrt{10c}$

Divide the radical expressions and simplify the answer				
$5\sqrt{m}+m\sqrt{13m}$				
$\sqrt{5m}$				
а	$5+m\sqrt{65}$	b	$\frac{\sqrt{10}-m\sqrt{130}}{10}$	
C	$\frac{5+m\sqrt{65}}{2}$	d	$\frac{5\sqrt{5}+m\sqrt{65}}{5}$	
е	$\frac{5\sqrt{5}-m}{5}$	f	$\frac{5+m\sqrt{65}}{10}$	