Name:	

Math worksheet on 'Slope - Find Perpendicular - Decimal Slope to Slope Y Intercept Form (Level 1)'.
Part of a broader unit on 'Slopes and Perpendiculars - Intro'

Learn online:

app.mobius.academy/math/units/line equations and perpendiculars intro/

2 What line equation would have a slope that is PERPENDICULAR to this slope?	a $y = \frac{4}{2}x + 2.25$ $y = \frac{1}{4}x + 2.$	25
m=4	c d $y = -4x + 2.25$ $y = -\frac{1}{4}x + 2.$.25

1 What line equation would have a slope that is PERPENDICULAR to this slope?	$egin{aligned} \mathbf{a} \ y = -1x + 1 \ y = rac{1}{2}x + 1 \end{aligned}$
m=1	$egin{aligned} \mathbf{c} \ y = 1x + 1 \end{aligned}$

What line equation would have a slope that is PERPENDICULAR to this slope?	$egin{aligned} \mathbf{a} \ y = 2x + 2 \end{aligned}$	$y=rac{1}{2}x+2$
m=-2	$egin{aligned} \mathbf{c} \ y = -rac{1}{2}x + 2 \end{aligned}$	\mathbf{d} $y=-rac{2}{2}x+2$

4 What line equation would have a slope that is PERPENDICULAR to this slope?	$y=-rac{3}{2}x+1$	$y=-rac{1}{3}x+1$
m=-3	$egin{aligned} \mathbf{c} \ y = 3x + 1 \end{aligned}$	$y=rac{1}{3}x+1$

5 What line equation would have a slope that is PERPENDICULAR to this slope?	$y = -1x + 3$ $y = -\frac{1}{2}x + 3$
m=-1	$egin{array}{c} \mathbf{c} \ y = 1x + 3 \end{array}$

6 What line equation would have a slope that is PERPENDICULAR to this slope?	$y=rac{1}{2}x+1$	$egin{aligned} \mathbf{b} \ y = 2x + 1 \end{aligned}$
m=-0.5	$egin{aligned} \mathbf{c} \ y = -2x + 1 \end{aligned}$	$egin{aligned} \mathbf{d} \ y = rac{2}{2}x + 1 \end{aligned}$

7 What line equation would have a slope that is PERPENDICULAR to this slope?	$y = -\frac{5}{2}x + 5$	y=5x+5
m=0.2	$egin{aligned} \mathbf{c} \ y = -rac{1}{5}x + 5 \end{aligned}$	d $y = -5x + 5$