Name:		

Math worksheet on 'Slope - Find Perpendicular Decimal Slope to Slope Zero Intercept Form (Level
1)'. Part of a broader unit on 'Slopes and
Perpendiculars - Intro'

Learn online:

app.mobius.academy/math/units/line equations and perpendiculars intro/

2 What line equation would have a slope that is PERPENDICULAR to this slope?	$y = -rac{1}{4}x y = -rac{4}{2}x$
m=0.25	$\overset{ extsf{c}}{y} = 4x\overset{ extsf{d}}{y} = -4x$

1 What line equation would have a slope that is PERPENDICULAR to this slope?	$\overset{\mathtt{a}}{y} = 1x\overset{\mathtt{b}}{y} = rac{1}{2}x$
m=1	$\stackrel{ extbf{c}}{y}=-1x$

What line equation would have a slope that is PERPENDICULAR to this slope?	$\stackrel{ extbf{a}}{y}=-rac{1}{3}x$	$\stackrel{ extbf{b}}{y}=-rac{3}{2}x$
m=0.33	$\stackrel{ extbf{c}}{y} = -3x$	$\stackrel{ ext{d}}{y}=3x$

4 What line equation would have a slope that is PERPENDICULAR to this slope?	$y = -rac{1}{2}x y = -rac{2}{2}x$
m=0.5	$\stackrel{ extsf{c}}{y}=2x\stackrel{ extsf{d}}{y}=-2x$

5 What line equation would have a slope that is PERPENDICULAR to this slope?	$y=rac{1}{5}x$	y=5x	$oldsymbol{c}$ $y=-rac{1}{5}x$
m=-5	$oldsymbol{d} y = -rac{5}{2} x$		

6 What line equation would have a slope that is PERPENDICULAR to this slope?	$oldsymbol{y}$	=	2x	$oldsymbol{y}$	=	-2 x
m=-0.5	$oldsymbol{v}$	=	$\frac{2}{2}x$	$oldsymbol{y}$	=	$\frac{1}{2}x$

7 What line equation would have a slope that is PERPENDICULAR to this slope?	$egin{aligned} y = -rac{1}{2}x \begin{vmatrix} \mathbf{b} \ y = 1x \end{vmatrix}$
m=-1	$\stackrel{ extbf{c}}{y} = -1x$