Name:			

Math worksheet on 'Slope - Find Perpendicular -Slope Zero Intercept Form to Slope Y Intercept Form (Level 1)'. Part of a broader unit on 'Slopes and Perpendiculars - Intro'

Learn online:

app.mobius.academy/math/units/line equations and perpendiculars intro/

1 What line equation would have a slope that is PERPENDICULAR to the slope of this line equation?	$egin{aligned} \mathbf{a} & \mathbf{b} \ y &= 1x + 1 \ y &= -1x + 1 \end{aligned}$
y = 1x	$egin{aligned} \mathbf{c} \ y = -rac{1}{2}x + 1 \end{aligned}$

2 What line equation would have a slope that is PERPENDICULAR to the slope of this line equation? $y = \frac{1}{4}x + 3.25 \quad y = -4x + 3.25$ $y = \frac{1}{4}x + 3.25 \quad y = -4x + 3.25$ $y = \frac{1}{4}x + 3.25 \quad y = -\frac{1}{4}x + 3.25$

3	What line equation would have a slope that is PERPENDICULAR to the slope of this line equation?

a	$y=-\frac{1}{2}x+1$	b	y = 1x + 1	
C	y = -1x + 1			

4 What line equation would have a slope that is PERPENDICULAR to the slope of this line equation?	$egin{aligned} \mathbf{a} \ y = -4x + 4 \ y = -rac{1}{4}x + 4 \end{aligned}$
$u = \frac{1}{x}$	$egin{array}{c} oldsymbol{c} \ y = -rac{4}{2}x + 4 \ y = 4x + 4 \ \end{array}$
9 4	

5	What line equation would have a slope that is
	PERPENDICULAR to the slope of this line
	equation?
	_

a
$$y = -\frac{4}{2}x + 2$$
 b $y = 4x + 2$ **c** $y = \frac{1}{4}x + 2$ **d** $y = -\frac{1}{4}x + 2$

6 What line equation would have a slope that is PERPENDICULAR to the slope of this line equation?	a $y = \frac{2}{2}x + 1.5$ $y = -\frac{1}{2}x + 1.$	5
y = 2x	c $y=-2x+1.5$ $y=rac{1}{2}x+1.$	5

What line equation would have a slope that is PERPENDICULAR to the slope of this line equation?	\mathbf{a} $y = -5x + 0.2$	\mathbf{b} $y = -\frac{1}{5}x + 0.2$
y = 5x	$oldsymbol{c} y = rac{1}{5}x + 0.2$	$oldsymbol{d} y = rac{5}{2}x + 0.2$
•		