3

Name:			

Math worksheet on 'Speed - Distance and Time to Speed - Variables, Changed Distance Units (Level 1)'. Part of a broader unit on 'Speed, Distance, and Time - Practice'

Learn online: app.mobius.academy/math/units/speed distance time practice/

1	$\stackrel{a}{ZP} m/d$	$egin{array}{c} \mathbf{b} \\ \hline 1,000Z \end{array} m/d$
A car drives for P d and goes Z mm. How fast is this in m/d?	$rac{{f c}}{ZP} \; m/d$	$egin{array}{c} {f d} \ Z \ 1,000P \end{array} m/d$

2	$egin{array}{c} \mathbf{a} & & & & & & & & & & & & & & & & & & &$	$drac{{f b}}{1,000Y} \ m/d$
A car drives P km in Y d. How fast is this in m/d?	$rac{\mathbf{c}}{1,000P} \ m/a$	$d = 1 \over 1,000 PY m/d$

A car drives P mm in B s. How fast is this in cm/s?

a	b	С	d
$oxed{rac{1}{PB}~cm/s}$	$rac{B}{10P} \ cm/s$	$\left rac{10B}{P} \; cm/s ight $	$rac{P}{10B} \; cm/s$

$egin{array}{c} rac{1}{C} & mm/s \ \hline {f c} & \\ rac{1}{10XC} & mm/s \end{array}$	$egin{array}{c} {f b}_X \ \hline {10C} \ mm/s \ \hline {f d}_X \ \hline {f M}_X \ mm/s \ \hline \end{array}$

5	$rac{{f a}}{1,000Y} \ m/s$	_
A car drives for R s and goes Y km. How fast is this in m/s?	$rac{R}{1,000Y} \; m/s$	d $1,000YR\ m/s$

6	$rac{1,000X}{B}~km/ms$	$egin{array}{c} oldsymbol{b} \ \hline rac{B}{1,000X} \ km/ms \end{array}$
A car drives B m in X ms. How fast is this in km/ms?	$\frac{\mathbf{c}}{1,000B} \frac{1,000B}{X} \ km/ms$	$egin{array}{c} {f d} \ X \ 1,000B \end{array} km/ms$

7 $\frac{{\rm a}}{10CN} \frac{mm/min}{mm/min}$ A car drives C cm in N min. How fast is this in mm/min? $\frac{{\rm c}}{10N} \frac{C}{mm/min}$ $\frac{C}{10N} \frac{C}{mm/min}$ $\frac{1}{10CN} \frac{mm/min}{mm/min}$